Regularizing portfolio optimization
نویسندگان
چکیده
The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification ‘pressure’. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset. 3 Author to whom any correspondence should be addressed. New Journal of Physics 12 (2010) 075034 1367-2630/10/075034+15$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Distributed Majorization-Minimization for Laplacian Regularized Problems
We consider the problem of minimizing a block separable convex function (possibly nondifferentiable, and including constraints) plus Laplacian regularization, a problem that arises in applications including model fitting, regularizing stratified models, and multi-period portfolio optimization. We develop a distributed majorizationminimization method for this general problem, and derive a comple...
متن کاملRobustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملOverview of Portfolio Optimization Models
Finding the best way to optimize the portfolio after Markowitz's 1952 article has always been and will continue to be one of the concerns of activists in the investment management industry. Researchers have come up with different solutions to overcome this problem. The introduction of mathematical models and meta-heuristic models is one of the activities that has influenced portfolio optimizati...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملStock Portfolio Optimization Using Water Cycle Algorithm (Comparative Approach)
Portfolio selection process is a subject focused by many researchers. Various criteria involved in this process have undergone alterations over time, necessitating the use of appropriate investment decision support tools. An optimization approach used in different sciences is using meta-heuristic algorithms. In the present study, using Water Cycle Algorithm (WCA), a model was introduced for sel...
متن کاملComparison of particle swarm optimization and tabu search algorithms for portfolio selection problem
Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...
متن کامل